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ABSTRACT 

The paper proposes tests for detecting effects of policy decisions in the ARMA-GARCH 

forecast uncertainty. It is assumed that neither timing nor the magnitude of such decisions is 

known, and the outcomes can be detected by testing the distribution of innovations of the 

model. It is proved that the Lagrange Multiplier-type tests have well defined asymptotic 

properties. It is also shown that the power is reasonable for a range of alternatives. Finite 

sample critical values are obtained by simulation. Empirical application leads to identifying 

countries with significantly policy-affected uncertainty in series of daily and monthly 10-year 

government bonds for 37 countries.  
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1. INTRODUCTION 

There is a mounting evidence of the relationship between the macroeconomic and policy 

uncertainties and economic growth (see e.g. Bachmann, Elstner and Sims, 2013, Bloom 2009, 

Bloom, 2014, Baker, Bloom and Davis, 2015, Jurado, Ludvigson and Ng, 2015, and many others). 

The consensus is such that uncertainty is detrimental for growth, as it increases real option costs, 

risk premia and precautionary savings. However, relatively little is known about the effectiveness 

of possible countermeasures, that is whether some economic policy (fiscal or monetary), can 

reduce such uncertainty. The existence of such policies is evident; inflation targeting, aiming at 

stabilisation of inflation, and hence reducing the uncertainty, is an example. However, the question 

of evaluation whether the uncertainty-reducing policies work in practice is still open. 

So far, effects of economic policy are usually evaluated empirically by introducing specific 

variables which represent clearly identified policy actions in the past. Such approach affects, by 

construction, the first moment (conditional mean) of the process, leaving higher moments intact. 

This limits the possibility of enquiring about the policy effects on reducing the uncertainty. 

Moreover, it requires specific knowledge regarding the timing and magnitude of the policy inputs. 

Sometimes such information is available, e.g. changes of the interest rate are announced by the 

monetary policy board. Nevertheless, often such information is of a rather fuzzy nature which is 

difficult to identify: government announcements, speeches, or sometimes newspapers-generated 

scares or optimism. Direct effect of such information on the conditional mean might not be 

substantial, but they might markedly affect the uncertainty, in a positive or negative way.  

In this paper, we are assuming that we do not have enough knowledge to identify exact timing and 

magnitude of policy decisions. We are merely saying that some past policy decisions based on 

information that is not included in the model as explanatory variables might implicitly affect the 

distribution of forecasts from this model, and, hence, uncertainty. This limits the concept of 

uncertainty to the ex-post forecast uncertainty that is measured by dispersion of the ex-post 

forecast errors (see Clements, 2014, Rossi and Sekhposyan, 2015). It is known that the uncertainty 

measures which use forecast errors correlate well with some known measures of macroeconomic 

and policy uncertainty and with the measures developed on the basis of surveys of professional 

forecasters (e.g. Bachmann, Elstner and Sims, 2013). In Charemza, Díaz and Makarova (2014) it is 

argued that the non-normality the distributions of such forecast errors is caused, to an extent, by 

policy actions aimed at reducing uncertainty. In this paper, we propose a formal test aiming at 

detecting effects of such policies in the one-step-ahead forecast errors of a simple 

ARMA-GARCH model.  

In Section 2 we introduce general assumptions that underlie the methodology, which are made 

model-specific further in Section 3. Section 4 proposes three tests based on the Lagrange 

Multiplier principle and developed on the basis of the joint maximum likelihood inference of the 

ARMA-GARCH model and the policy parameters. In Section 5 we discuss implications which 

have to be considered before applying the tests in practice, in particular, finite sample power of the 

tests and size bias. Section 6 gives some results of applying the tests for detecting effects of 

uncertainty-reducing fiscal policies in the series of yields of the government bonds for 37 

countries. Section 7 concludes. Two appendices are included. Technical proofs are provided in 

Appendix 1; detailed empirical results are presented in Appendix 2. Overall, the outcome seems to 

be moderately optimistic. The tests have in certain ranges, reasonably high power and are 

computationally feasible. The empirical results confirm the practical relevance of the tests 

proposed.  
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2. GENERAL ASSUMPTIONS  

The problem of detecting the distributional effects of policy interventions on the uncertainty can 

be formulated in the following way. Let 1( | )t tE X F  be the optimal prediction of an economic 

variable tX  given its past 1 = ( , < )t uF X u t . Let 2

1( | )t tX F 
 be the variance of tX  

conditional to 1tF  . In absence of economic policy intervention, the economic variable would be  

 * *

1 1= ( | ) ( | ) ,t t t t t tX E X F X F U   

with an error term *

tU  which is assumed to be iid (0,1)N  distributed, independently of 1tF  . 

Now assume that an expert has the knowledge of some extra information set tS , which is 

independent of 1tF  , but not of *

tX  (and thus not of *

tU ). Disregarding expected feedback of the 

possible policy intervention which might be based on information from this expert regarding the 

level of *

tX , the prediction of the expert will be 1( | , )t t tE X F S . Let  

 1 1= ( | , ) ( | )t t t t t tD E X F S E X F   and 
1

=
( | )

t
t

t t

D
Z

X F 

 

be respectively the absolute and relative differences between the two predictions. Assume that 
*( , )t tU Z  is iid with  

 
*

2

1
0, .

Zt

Z Zt

U
N

Z



 

     
    
     

 

The policy maker decides to act when the difference tD  between the predictions is big enough, in 

such a way that the actual economic variable becomes  

 *

> <= 1 1 ,t t t Z t Z
t t

X X D D     

where 0   . If the policy maker perceives tD  as an unexpected shock on the economic 

variable that needs to be attenuated, the values of   and   are negative. Note that, by scaling 

the parameters  ,  ,   and   it is not restrictive to assume =1Z . The conditional 

prediction error based on the past is then  

 *1
> <

1

( | )
= = 1 1 .

( | )

t t t
t t t Z t Z

t t
t t

X E X F
U U Z Z

X F
  







   

Developing from the terminology of Clements (2014), tU  is a one-step ahead ex-post forecast 

uncertainty, net of predictable volatility effect. It has been shown by Charemza, Díaz and 

Makarova (2014) that tU  follows a normalized weighted skew-normal (WSN) distribution. 

Let   and   be the density and the cumulative distribution function of the standard normal 

distribution. The normalized WSN distribution of parameter  

 2= ( , , , , ) ( , ) [0, ) ( ,0] ( 1,1)u                 
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is defined by the density  

 
2 2

1 1
( ) =

(1 ) (1 )u

B x Ax B x A x
f x

A A A AA A

  


    


 

 

       
       

             

 

 
2 2

( ) ,
1 1

x x
x

   


 

      
      
         

 

where 2=1 2aA a a   and =aB a  . 

Figure 1 compares densities and quantiles of standard normal distribution with that of two WSN 

distributions: symmetric one with parameters ( , , , , ) ( 2 , 2,1, 1 ,0.75)          and 

asymmetric one with parameters ( , , , , ) ( 2,0,1, 1 ,0.75)        . 

 

Figure 1: Comparison of standard normal and WSN distributions 

densities q-q- plot 

 
 

 

The q-q plot represents pairs of quantiles of the standard normal and WSN distributions, with the 

deviations from the 45 line illustrating their deviation from normality.  

The objective of this paper is to assess the presence of effective economic policy interventions, by 

using only time series data 1, , nX X  in which these effects might be imprinted. Examples of 

such series might be exchange rates under the managed (‘dirty float’) regime, where efforts to 

stabilize the currency might be detected, yields of government bonds showing the signs of fiscal 

policy, inflation for inflation targeting countries, where outcomes of monetary policy decisions 

can be found, etc. We first consider a general econometric model with WSN innovations and we 

propose a Lagrange Multiplier (LM) test of the hypothesis that 0 0= = 0  , which corresponds to 

the null of absence of economic policy intervention. The choice of the ML test is guided by the fact 

that this test does not require the estimation of the WSN parameters.  
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3. THE MODEL AND ITS ESTIMATOR  

Let ( )tX  be a stationary process satisfying  

 1 2 1 2
0 0

= ( , , ) ( , , )t t t t t t
m

X m X X X X U  
       , (1) 

where 
0

( )
m

m   and 
0

( ) 
   are functions valued in  and [0, )  respectively, and where 0m  

and 0  are vectors of unknown parameters belonging to 
s
m

m   and 
s

  . It is 

assumed that tU  is independent of { , < }uX u t  and that ( )tU  is iid with the WSN distribution of 

parameter  

  0 0 0 0 0 0= ( , , , , ) , = 5.
s
u

u u us         

Under these assumptions, the functions 
0m

m  and 
0
 

  are the first and second conditional 

moments:  

 0 1 2
0

( ):= ( , , ) = ( | , < )t m t t t u
m

m m X X E X X u t    

 2 2

0 1 2
0

( ):= ( , , ) = ( | , < )t t t t uX X Var X X u t  
    

 . 

Given the observations 1, , nX X , the initial values 0 0 1 1= , = ,X x X x   and the parameters 

m m   and    , for =1, ,t n , the functions ( )t mm   and ( )t    can be approximated 

by  

 1 1 0 1 1 0( ) = ( , , , , ), ( ) = ( , , , , ).t tm t t
m

m m X X x X X x  
      

Let = m u     be the parameter space of the vector 0 0 0 0= ( , , )m u        of all the 

unknown parameters. The maximum likelihood estimator (MLE) of 0  is defined by  

 
=1

1
= ( ), ( ) = ( )argmax

n

tn n

t

Q Q
n

   


  

where  

 
1 ( )

( ) = log
( ) ( )

tt m
t

u
t t

X m
f

 




   

   
  
   

 . 

Let U  be a random variable with density 
0

=
u

f f . The Fisher information given by an 

observation U m   on the location-scale parameter ( , )m   is  

 

 
2

2 2

( ) ( )
:= := 1 ( )

( ) ( )1
.

( )
:= 1 ( )

( )

m m

m

f x f x
dx x f x dx

f x f x

f x
x f x dx

f x



 

 


 

   
  

  
 

  
  

  

 


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Writing 0t , 0 /t mm    and 0 /t     instead of 0( )t   , 0( ) /t m mm     and 0( ) /t     

, we introduce the Fisher information matrices  

 

0 0 0 0

2 2

0 0

0 0 0 0

4 2

0 0

1 1

= , =
1 1

t t t t
m m

t m m t mu

u u t t t t
m

t m t

m m m
E E

I I
I I

I I m
E E



 




 

  


 

     

  
 

     

    
        

 
     
      

 , 

 

0

0

0

2

0

1 log ( )
( )

log ( ) log ( )
= , = ' =

1 ( ) ( )
1

( )

t

t m u

u u u

u u t

t u

m f u
E f u du

f U f U
I E I I

f u f u
E u du

f u

 



  

  

  

  
     

     
       





 . 

In the sequel, > 0K  and [0,1)  denote generic constants, or random variables measurable 

with respect to { , 0}uX u  , whose values are unimportant and may vary along the text. It can be 

shown that   is consistent and asymptotically normal under the following assumptions. 

Assumptions A: 

(i) ( )tX  is a non anticipative and strictly stationary solution to (1); 

(ii)   is a compact set, whose interior contains 0 ;  

(iii) we have | | <tE X   , | ( ) | <sup t m
m m

E m 





  and ( ) <sup tE 

 
 


  for some > 0 ;  

(iv) ( ) ( )sup
t

tt m m
m m

m m K


  


   and ( ) ( )sup
t

tt m K 
    


  ;  

(v) := ( ) > 0inf t  
   ;  

(vi) the functions ( )m t mm   and ( )t     admit continuous third order derivatives;  

(vii) if 0m m   then 0( ) ( )t m t mm m   and if 0    then 0( ) ( )t t      with positive 

probability;  

(viii)  

 
( ) ( ) ( ) ( )

and ;sup sup
t tt tt m m t

m mm m

m m
K K 

    

     
 

    

   
   

   
 

(ix) we have  

 
( ) ( )

< and <sup supt m t

mm m

m
E E

 



   

  

  

 
 

 
 

for some > 0 ;  

(x) if 
s
m  is non null then P( ( ) / = 0) <1t m mm    , and if 

s  is non null then 

P( ( ) / = 0) <1t       ;  

(xi) if 0u u   then 
0u u

f f  ; 

(xii) the information matrix I  exists.  

Example 1 (ARMA(1,1)-GARCH(1,1)) Consider the ARMA(1,1)-GARCH(1,1) model  
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0 1 0 0 1

2 2 2

0 0 0 0 1 0 1 0

=

= ( ) , ( ) = ( )

t t t t

t t t t t t

X a X c b

U  

 

          

 

 

  


 
 (2) 

We then have 0 0 0 0= ( , , )m c a b   and 0 0 0 0= ( , , )     . Note that the GARCH equation is not 

written in the standard form (more precisely, 2

0( )t    is not necessarily equal to the conditional 

variance of tX  because, in general, 0tEU   and 2 1tEU   for WSN distributions). It is, 

however, easy to see that (i) of Assumptions A is satisfied if  

 2

0 0 0 1 0| |<1, | |<1, log( ) < 0.a b E U   (3) 

The strict stationarity condition also entails the existence of a fractional moment, as required in the 

first part of (iii) (see Lemma 2.3 in Berkes, Horváth and Kokoszka, 2003). Assuming that for all 

= ( , , )m mc a b   and all = ( , , )      ,  

 | |<1, | |<1, > 0, 0, 0 <1,a b        (4) 

the last moment conditions of (iii), as well as the conditions (iv)-(v) and (viii) are always satisfied 

(see e.g. Francq and Zakoïan, 2004). Condition (vi) is trivially satisfied. Conditions (viii) and (ix) 

are also entailed by the previous conditions and the specific form of the conditional moments. The 

identifiability conditions (vii) and (x) hold true when  

 0 0 0 > 0.a b and   

Remark 3.5 in Francq and Zakoïan (2004) shows that the moments involved in I  may not exist 

without moment condition on tX , when the ARMA part is present. Condition (xii) is guaranteed 

under the moment condition 4 <tE  , given by  

 2 2 2 4

0 0 1 0 0 12 <1.EU EU      

The proof of the following result is given in Appendix 1. Similar results can be found in the 

literature (see e.g. Pötscher and Prucha, 1997).  

Lemma 1. If Assumptions A holds true, then the MLE   is consistent. If in addition the matrix I  

is invertible, then  0n    is asymptotically 
1(0, )N I  -distributed.  

Remark 1. Note that when 0 = 0  we have 
0

( ) / = 0.
u

f x    Therefore 
0

=I I  is singular 

when 0 = 0  or 0 = 0 . Moreover, the identifiability conditions (vii) and (x) of Assumptions A 

are not satisfied in this case, so that the consistency of   is not guaranteed.  

4. THE TESTING PROBLEM  

We are interested in the testing problem  

 0 0 0: = = 0H    against 1 0: 0H    or 0 0    , (5) 

Such null hypothesis represents the case where there is no policy effects in the one-step ahead 

forecast uncertainty. Note that, under the null 0H , the parameter 0 0 0 0= ( , , )      is not 
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identified, and Lemma 1 does not apply (see Remark 1). Denote by   the parameter space for 

0 . Let 0 0 0= ( , )m m        be the vector of the parameters that remain unknown under the 

null. Under 0H , the WSN density 
0u

f  reduces to the (0,1)N  density  . The maximum 

likelihood estimator of 0  is then defined by  

 
* * *

=1

1
= arg ( ), ( ) = ( )max

n

tn n

tm

Q Q
n 

   
 

   , (6) 

where  

 

2

* 21 ( ) 1 ( )
( ) = log = log ( )

2( ) ( ) ( )

t tt m t m
t t

t t t

X m X m


  

 
   

     

         
       

        

 . 

Thus = ( , )m       is the Gaussian MLE of 0  under 0H . Even when 0H  does not hold,   is 

the Gaussian Quasi-MLE, and thus it is consistent under mild assumptions. Define the vector of 

the first = 2ms s s   components of   as = ( , , )     . Define also the 0H 

constrained parameters = ( ,0,0)
c

    and 0 0= ( ,0,0)
c

  
 , and the constrained estimator 

= ( ',0,0)
c

   . For all   , let ( ) = (0,0, )u    , ( ) = ( , ( ) )u       , ( ) = ( ', ( ) )u        and 

0 0( ) = ( , ( ) )u    
  . Finally, denote by = ( , )u    the first two elements of u u  . The 

convergence in distribution is denoted by 
d

 .  

Proposition 1. Assume that the conditions (i)-(viii) of Assumptions A are satisfied. We then have 

the strong consistency of   to 0  as n . Moreover, for all   , we have under 0H   

 
 

 0( )
0, ,

d
nQ

n N I as n

 




 


 (7) 

where the s s  matrix  

 I  is invertible when 0   and ( , ) (0,0)     (8) 

and can be consistently estimated by  

  
,

, , , ,

,

0
= , = , = ' = ,

0

mu
mu u u u

u u

I I I
I I I I I I

I I I

  

        

  

   
   

  
  

, 

where  

 , , ,

=1

1 1 ( )
= ', = ,

( )

n
t m

m m t m t m t

tt m

m
I D D D

n 



 




  

 , , ,

=1

2 1 ( )
= ', =

( )

n
t

t t t

tt

I D D D
n


   

 

 

 




  
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 , , , ,

=1 =1

1 1
= f , = f ,

n n

m m t tu u

t t

I D I D
n n

       

with f = ( ( ), ( ))       and 
u

I  a deterministic 2 2  matrix depending only on  .  

Proof. The CAN of the Gaussian QMLE has been extensively studied in the literature. For 

ARMA-GARCH models, note that (iii)-(vi) and (viii) are entailed by the other assumptions and by 

the specific form of the conditional moments (see Francq and Zakoian, 2004). For more general 

forms of tm  and t , similar results can also be found in the literature (see e.g. Amendola and 

Francq, 2009). 

Therefore we only give the detailed proof of (7) and (8). To lighten the notation, write respectively 

tm , tm , t  and t  instead of ( )t mm  , ( )t mm  , ( )t    and ( )t   . Let ( )t   and ( )nQ   

be obtained by replacing tm  and t  by tm  and t  in ( )t   and ( )nQ  . We have  

 
 

=1

( ) 1 1
=

n
n t t t

tm t t m

Q X m m

n

 

   

   
 

  
   , (9) 

 
 

2

=1

( ) 1 1
= 1

n
n t t t

t t t

Q X m

n 

  

   

     
  

    
   . (10) 

Now note that  

 
( ) ( ) ( )

:= =
t t t tt t t t t t t t t

t
t tt t

X m X m X m m m    

   

      
    . 

By (iv) and (v) we thus have  | | | | .t

t t t tK X m      Since a relation similar to (9) holds true 

for  ( ) / mnQ      we obtain  

 

   

=1

( ) ( ) 1 1 | |n
tn n t t t t t

t
ttm m t m t m

Q Q m X m m

n

     

     

     
   

   


=1

1 n
t t tt t

t
t t tm m

X m m m K
S

n


  

  
  

 
 , 

 =| | | | tt
t t t t

m

m
S X m K 




   


 . 

In view of (iii) and (ix) we have <s

tES  . Assuming <1s , we thus obtain  

 
=1 =1

<

s

t ts s

t t

t t

E S ES 
  

  
 
   

and thus 
=1

t

tt
S



  is finite almost surely. Doing similar expansions with (10), it follows that  
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   

 1( ) ( )
=sup

n n

P

Q Q
O n



   

 





 


 
  . (11) 

Note that  

 
3/2 2

( ) 1
= ( )

(1 )

u
f x x B x A

A A A

  

  


  

 

    
    

       

 

 
3/2 2

1
( )

(1 )

x x B x A

AA A A

 

  


  



   
     
      

 

 
2 2 3/2 2

1 2 ( ) ( )( )

(1 ) (1 ) 1

x B x A x B x A

A A A A A

   

    

      


  

         
                

  . 

Therefore, at any = (0,0, )u   , we have  

    , ,

( ) ( )
= ( ), = ( )u u

f x f x
x g x x g x

 

    
 

 

 
  , (12) 

where  

 
2

2

, 2 2 2

(1 )
( ) = ( 1)

1 1 1

x x x
g x x 

     
 

  

        
                

  , 

 
2

2

, 2 2 2

(1 )
( ) = ( 1)

1 1 1

x x x
g x x 

     
 

  

         
                

  . 

We then obtain  

 
 

=1 =1

( ) 1 1 1
= =

n n
n t t t t

u
t tu u t tt t

t

Q X m X m
f g

n nX m
 

 

   




     
   

      
 
 

  , (13) 

where , ,( ) = ( ( ), ( ))g x g x g x    
 . The same equality holds true when nQ , tm  and t  are 

replaced by nQ , tm  and t . Using the fact that   and   are Lipschitz continuous functions, 

we have  

  2 2| | 1
tt t t

t t t
tt

X m X m
g g K X m 

 

   
      

   
 . 

By already used arguments, this entails  

 
   

 1( ) ( )
=sup

n n

P

u u

Q Q
O n



   

 





 


 
 . 
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In view of (11), we have shown that  

 
   

 1( ) ( )
=sup

n n

P

Q Q
O n



   

 





 


 
  . (14) 

To show (7), it thus suffices to prove  

 
 

 0( )
0,

d
nQ

n N I as n

 




 


 , (15) 

First note that  

 

00

0
0

0 00

=1 0
0

0

0

( ) 1

( )

( )( ) 1 1
= 1

( )

1
( )

( )

t
tu

t t m
u

n
t

n tu
t

t t t
u

t
u

ut
u

f U m

f U

f UQ
n U

f Un

f U
f U







 





 

 

  



 
 

 
 

    
   

    
 

 
 
 

  , 

where the random variables tU  are independent and (0,1)N -distributed, since under 0H  we 

have 
0

=
u

f  . Using (12) and (15), the central limit theorem for martingale differences then 

entails  

 
 

 

0

0

20 0

=1 0

1

( ) 1 1
= 1 =

( )

t
t

t m

mn d
n t

t

t t

u
t

m
U

W
Q

n U W W
n

W
g U









 

  

  

 
 
   

   
    

    
  

 
 

 , (16) 

where W  is normally distributed with mean zero and variance  

 

0 0 0

2

0 0

0 0 0

2

0 0

0 0

0 0

1 1
0 ( )

1 1
= 0 2 ( )

1 1
( ) ( ) ( ) ( )

t t t
t t

t m m t m

t t t
t t

t t

t t
t t t t t t

t m t

m m m
E E EU g U

I E E EU g U

m
EU g U E EU g U E Eg U g U



 

  

   



    

  

    



   

   
 

   
   

 
   

  
    

  . 

Therefore (15), and thus (7), are shown. Tedious computations show that ( ) = ft tEU g U  . It has 

not been possible to obtain such an explicit form for  

 := ( ) ( )t tu
I Eg U g U  

  , 
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however, the elements of this matrix can be evaluated by numerical integrations. 

We now show by contradiction the invertibility of I . If I  is singular, then there exists a 

non-zero vector 1 2 3 4= ( , , , )     
   , with 1

s
m  , 2

s   and 2

3 4( , )    such that  

  20 01 2
3 , 4 ,

0 0

1 ( ) ( ) = 0 a.s.t t
t t t t

t m t

m
U U g U g U   



 
 

   
  

   
 

 (17) 

Now note that, if > 0  then  

 
2

3 , 4 , 3( ) ( ) ( 1)g x g x x as x          

and  

 
2

3 , 4 , 4( ) ( ) ( 1)g x g x x as x           . 

The equivalences are reversed when < 0 . Conditioning on the sigma-field generated by 

{ , < }uX u t , (17) thus entails that, almost surely,  

 0 02 2
3 4

0 0

= 0 and = 0t t

t t 

  
   

   

  
 

 
 . 

The first two equalities entail 3 4=  , and (17) thus reduces to  

    20 01 2
3 , ,

0 0

1 ( ) ( ) = 0 a.s.t t
t t t t

t m t

m
U U g U g U   



 


   

  
   

 
 (18) 

Note that 
, ,( ) ( )x g x g x     is linearly independent of x x  and 

2 1x x   when .   

Therefore (18) and the conditions (v) and (x) of Assumptions A imply = 0 , which completes the 

proof of (8).   

In view of Proposition 1, and in particular (8), we now restrict the possible values of   to a 

compact set of the form  

  0 = [ , ] [ , ] [ , ] [ , ]                , 

where 0 < <   and 0 < <  . Now consider the Lagrange multiplier (LM) test statistic  

    , = ( ) ( )
'

u

n n n

uu

LM n Q I Q


    
 

 

 
  , 

where 
u

I


 is the lower-right block of size 2 2  of the matrix 
1

I 


, which exists for n  large 

enough when 0  , by (8). Denote by 2

k  the chi-square distribution with k  degrees of 

freedom.  

Proposition 2. Under 0H  and the other conditions of Proposition 1, for each 0   we have  

 
2

, 2

d

nLM as n    . 
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Proof. From (16), we have  

 
 0

0
( )

0, =: 0

m m um
d

n

u

u mu u u

I IW
Q

n W N I I I

W I I I



   

    

 



   
      

    
           

  . 

As n , we also have a.s.  

 
   

 
2 2

0 0
0( ) ( )

:= and :=
0

mn n

mu u u
u

IQ Q
I I I I

I
     



   

   

  
    

     
 . 

It is well known that the Gaussian QMLE satisfies  

    1 0

0

( )
= (1)n

P

Q
n I n o

 
 



 
 


 . 

A Taylor expansion of the function  ( ) / unQ      around 0  and (14) then yield  

      0 , 0( ) = ( ) (1)n Pn u
u u

n Q n Q I n o      
 

 
  

 
 

   1 1

, ,0,
d

u u u u u
W I I W N I I I I         

     , 

using the notation = ( , )mW W W  
 . Noting that  

1
1

,u u u
I I I I    


  is the lower-right block of 

1I
 , the conclusion follows.   

For the testing problem (5), Proposition 2 suggests rejecting 0H  at the asymptotic level (0,1)  

when  

  2

, 2> (1 )nLM     . 

The drawback of this test is that it relies on the somewhat arbitrary choice of 0  . To solve the 

problem, Davies (1977, 1987) suggested using the supremum test statistic  

 ,

0

= supn nLM LM 


 . 

Weighted averages of the ,nLM  ’s and other test statistics have also been proposed in the 

literature. As noted by Hansen (1996), they are all of the form  

   , 0= ,n nT g LM     , 

where ( )g   is a continuous mapping from the set of the functionals from 0  to , equipped 

with the supremum norm. Let the covariance kernel 1 2 1 1 1 2( , ) = ( ) ( )K Es s     where  

  20 0

0 0

1 1
( ) = , 1 , ( ) , (0,1).t t

t t t t t

t m t

m
s U U g U U N






   

  
  

   
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Denote by kId  the identity matrix of size k . Let the 2 s  matrix  

    
1/2

1 1 1 1

2= , ,m m m m mu u u u u u u
M I I I I I I I I I I I Id           


         , 

and the covariance kernel *

1 2 1 2( , ) = ( , )K M K M      . Note that ( , ) =K I   and 

*

2( , ) =K Id  . Therefore * 2 * * 2

2( ) = ( ) ( )t t ts s s     when *( ) = ( )t ts M s  .  

Proposition 3  Under 0H  and the other conditions of Proposition 1, as n  we have  

   0

0

= ,sup
d d

n nLM LM LM and T g LM 





     , 

where * 2= ( )LM s   and  *

0( ),s     denotes a bivariate Gaussian random field on 0  

with mean zero and covariance kernel 
*( , )K   .  

Proof. First note that 2

, = ( )nnLM S   with  

  
 1/2 ( )

( ) =
nu

n

u

Q
S I n

  







 . 

By the proof of Proposition 2 and (16), we have  

    1

2

=1

1
( ) = , ( ) (1)

n

t Pn u
tu

n Q I I Id s o
n

    



 


  . 

It follows that, as n ,  

 
0

( ) ( ) = (1)sup n n PS S o


 


 , where 
=1

1
( ) = ( )

n

n t

t

S M s
n

  . 

By Slutsky’s lemma we thus have  

    * *

0 0 0 0{ ( ), } ( ), iff { ( ), } ( ),n nS s S s              , 

where   denotes the weak convergence of stochastic processes indexed by 0  , with 

continuous trajectories valued in 2 , endowed with the supremum norm. 

By the central limit theorem (CLT) of Billingsley (1961) for ergodic, stationary and square 

integrable martingale differences, and the Cramér-Wold device, the finite dimensional 

distributions of 0{ ( ), }nS     converge to that of  *

0( ),s    . To prove the weak 

convergence, it remains to show the tightness of 0{ ( ), }nS    . 

A vectorial sequence of random elements is tight when the sequences of each of its components are 

tight. Moreover a set of probability measures on a finite product space is tight if and only if each of 

the families of marginal measures is tight (see Corollary 7 of Whitt, 1970). In view of Theorem 

12.3 of Billingley (1968), the desired tightness result thus follows from  
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   
2

1 2 1 1 1 2 1 1 1 2

=1 =1

1 1
( ) ( ) = Tr ( ) ( ) ( ) ( )

n n

t t

t t

E s s E s s s s
n n

           

  
2

1 2
= ( ) ( ) ( )g u g u u du    

2

1 2 ,K     

with  

2

0

( )
= ( ) <sup

g u
K u du









  . 

The conclusion then comes from the continuous mapping theorem.  

One can approximate the distribution of LM  by that of  

  

2

,

2
,

=10

1
= , = 1sup

( )

m tt
n

tt

t

t

w D

LM LM LM M w D
n

g w

   







 
 
 
 
 
 

   , 

where 1, , nw w  are independent and (0,1)N  distributed, independently of 1, , nX X , and  

    
1/21 1

, , 2= ,u u u uM I I I I I I Id        

 

   . 

For (0,1) , let ,nc  be the  1  -quantile of LM  (which can be obtained by Monte Carlo 

simulations). The supremum LM test rejects 0H  at the asymptotic level   when   ,>n nLM c  . 

5. PRACTICAL IMPLICATIONS  

In this section we consider practical problems in applying the ,nLM   and nLM  tests proposed 

above. The problems are related to  

(a) setting up the range of the practically admissible values of 0  and 0 ;  

(b) finite sample size distortion of the tests; 

(c) possible loss of power of the nLM  test in relation to the ,nLM   test. 

Regarding the setting of the admissible (practically relevant) values of the policy parameters 0  

and 0 , the problem is posed by the fact that; for the hypotheses (5), 0 0 0: = = 0H    against 

one-sided alternative 1 0: 0H    and 0 0  , power of ,nLM   and nLM  is not increasing 

monotonously with the increase in 0( )  and 0( ) , that is, with the increase in the policy 

strength for all values of 0 0, ( ,0 ]    . As the variance of U  initially decreases with the 

decrease in 0  and 0 , and then increase, it is prudent to restrict the range of admissible 0 ’s 

and 0 ’s to 0 [0 , ]    0 [0 , ]   , where: 

 
0 0

*

,

{ , } arg min( ( ))Var U
 

    .  
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It can be shown that *

0       for the case where 0 0   . For the case of a lack of 

symmetricity between 0  and 0 , however, the relationship is more complex. Figure 2 shows 

values of    and *  for the case where 0 0   and 0 [0,2]  .  

Figure 2.  
 and 

*  in the case where 0 0   and 0 [0,2]    

  

 

The left panel of Figure 2 illustrates that, for 0 0  ,    increases with the increase in 0 , while 

the right panel shows that *  decreases, becoming smaller than (-1) for high values of 0 . The 

practical implication of this is that (a) the parameter   has the influence on the effects of the 

policy action unto the variance of the residuals in the ARMA-GARCH model, (b) in the case of a 

lack of symmetricity between 0  and 0  the practical relevance of the tests takes place only if 

0  is reasonably high; otherwise    and *  are very close to zero. 

The next problem is related to the fact, that for the ,nLM   test statistics only its asymptotic 

distribution is known under the null, and for the nLM  test statistics the asymptotic distribution is 

difficult to evaluate. Hence, it is necessary to compute quantiles of the simulated finite sample 

distributions of these statistics which might be used as critical values and for computing p-values 

in finite samples. Table 1 contains selected empirical quantiles obtained for the following data 

generating process, DGP_1 for the model (2): {1,0.5,0.2}m  ; {1,0.5, 0.3}  ; 0 0 0X   ; 
2

0 1  . For computing ,nLM  statistics we set {1, 1,0.75}   ; for computing nLM , we set 

0 = [0.75,1.25] [ 1.25, 0.75] [0.70, 0.90]      . Under the null of 0 0= = 0  , 

0= ( )t t tU   , where ~ (0,1)tU iid N . Different DGP’s have also been applied, with results 

similar to those presented here. For a given sample size the DGP has been replicated 100,000 

times. For each sample, the parameters m  and   have been estimated by maximizing 

likelihood function given by (6) with the restrictions imposed by (3) and (4). Then the statistics 

,nLM   and nLM  have been computed in 100,000 replications, and their empirical quantiles 

evaluated. For the evaluation of each nLM  statistics, 40 drawings of   from 0  have been 

made. Increasing the number of drawings do not change the results markedly. For the first two 
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elements of 0 0 0 0= ( , , )      drawings were made symmetrically, that is in each drawing 

0 0   . Results are given in Table 1. For independent drawings of 0 and 0  results are 

similar. Bootstrapped standard errors of the estimated quantiles have also been computed and 

reported in the parentheses below the quantiles. The n out of n bootstrap technique has been 

applied (see Hall and Martin, 1988; Cheung and Lee, 2005). Statistics and standard errors have 

been smoothed slightly by the Bezier smoother with smoothing constant equal to 100. 

Table 1: Selected quantiles for 
,n

LM


 and 
n

LM  statistics under 
0 0 0

: = = 0H     

 

sample 

size 

,n
LM


 

n
LM  

0.5 0.9 0.95 0.99 0.5 0.9 0.95 0.99 
 

200 
0.871 4.350 5.903 10.290 1.306 5.277 7.101 12.535 

(0.003) (0.019) (0.026) (0.092) (0.004) (0.017) (0.053) (0.143) 
 

400 
0.806 4.208 5.884 10.566 1.246 5.081 7.009 12.528 

(0.006) (0.029) (0.039) (0.108) (0.006) (0.028) (0.057) (0.144) 
 

600 
0.764 4.258 5.994 10.549 1.207 5.122 7.148 12.502 

(0.006) (0.033) (0.038) (0.144) (0.007) (0.038) (0.047) (0.173) 
 

1000 
0.721 4.408 6.205 10.568 1.162 5.256 7.403 12.805 

(0.004) (0.026) (0.038) (0.203) (0.006) (0.039) (0.037) (0.246) 
 

1600 
0.732 4.584 6.452 10.916 1.164 5.474 7.798 13.410 

(0.005) (0.019) (0.042) (0.150) (0.010) (0.026) (0.056) (0.088) 
2
(2)  1.386 4.605 5.991 9.210 1.386 4.605 5.991 9.210 

 

Results in Table 1 reveal some upward bias of test size in finite samples for nLM , that is, if the 

2(2)  critical value was used as an approximation (as this is the asymptotic critical value for 

,nLM  ), the true null hypothesis would be rejected too often. Also the 0.99 quantile of the ,nLM   

test statistic is slightly overestimated, in relation to the corresponding 
2(2)  quantiles. For the 

high quantiles, the standard errors of the empirical quantiles are often markedly large, especially 

for smaller sample sizes. This calls for caution in testing when statistics computed for empirical 

series are in the vicinity of the quartiles selected as critical values. A way of dealing with this 

problem is discussed in Section 6.3. 

Empirical power of these tests in finite samples have been evaluated with the use of DGP_2, which 

is as the DGP_1, except that 0 0, [ ,0]     where 
0 0 0 0

0

, , 1;
0.75

argmin ( ( )) 0.6973
v

Var U
  



  

 


     

and U has the WSN distribution with parameters 0 0,   and 0 , where 0 {1, 1,0.75}   . The 

number of replications, for each sample size and 0 0 0    (that is, under the true null) is 

100,000. The 0.95 empirical percentiles for each test were computed and used further as critical 

values. Under the alternative, the number of replications for each set of 0 0,   is 10000 and 
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empirical power is defined as the frequency of rejections of the null hypothesis.  

Figure 3. Empirical power of 
,n

LM


 and 
n

LM  tests  

Fig. 3a: Power of 
,n

LM

 

different sample size 

Fig. 3b: Power of 
n

LM  

different sample size 

  

Fig, 3c: Power of 
,n

LM

 and 

n
LM , n=250  Fig, 3d: Power of 

,n
LM


 and 

n
LM ,n=5000 

  

Fig 3e: Power of 
,n

LM

 and 

n
LM , n=1000 Fig 3f: Power of 

,n
LM


 and 

n
LM , n=1500 

  

Analysis of graphs in Figure 3 reveals the following: 

(a) For all sample sizes, in cases were 0 0, [ 0.2, 0]    , power of the tests is negligible and 

practically equal to the test size. However, for 0 0 0, [ , 0.2]      it is rising 
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monotonously. 

(b) For a sample size of around 100, power of the both tests is, within the entire range of

0 0 0, [ ,0]   , very low, which makes the tests of limited value. However, for the sample 

size of 200, the power raises quickly with 0 0,   approaching    from the right reaching 

nearly 80% for 0 0,   being close to    for the 
,nLM   test and 70% for the nLM  test. 

(c) Consistency and convergence of the tests are illustrated by their continuously increasing 

power with the increase in sample size. For sample sizes of 1,000 and more, it practically 

reaches 100% for 
0 0, [ , 0.4]     . 

(d) As expected, the power of the nLM  test is lower than that of the 
,nLM   test. However, 

the difference is not substantial and it tends to diminish with the increase in sample size. 

This confirms the practical relevance of the nLM  test, which, unlike 
,nLM   does not 

require the perfect knowledge of 0 . The nLM  test is computationally more expensive 

than the 
,nLM   test; however, the additional cost is not substantial, as when the number of 

random drawings form 0  exceeds 40, there is no visible improvement in the accuracy of 

the test.  

Results shown in Figure 3, obtained for the case of symmetric drawings from 0 , are also valid 

for asymmetric drawings and also for a variety of different DGP’s, in particular with different m

’s and  ’s. There is, however, one important limitation of the tests. If the third parameter in 

vector  , that is  , becomes smaller than 0.65, the power of both tests diminishes rapidly, 

making the test of no practical use. 

 

6. EMPIRICAL APPLICATION: TESTING THE 10-YEAR GOVERNMENT BONDS 

The tests presented above have been applied for detecting policy effects on the uncertainty in 

series of 10-year government bonds in 37 countries. We have attempted to evaluate the following 

hypotheses: 

(1) Economic policy aiming at a stabilisation of changes in bond’s yields is affecting the 

distribution of the ex-post uncertainty of the dynamics of such changes. 

(2) Countries for which such distributions are significantly affected by the economic policy 

are characterized by initially higher, on average, level of fiscal burden, in comparison with 

countries for which there is no such significance.  

(3) The efficiency of fiscal policy implies that, after some time, this difference in the average 

level of fiscal burden, either diminish or disappear.  

6.1. Model and data 

The AR(k)-GARCH(1,1) models with WSN errors, which are within the class of models defined 

by (1), have been estimated for the first differences of logs of 10-year government bonds for 37 

countries. Two sets of data have been used for estimation: daily and monthly yields on the 

government bonds, obtained from Thompson Reuters database (http://thomsonreuters.com/). We 

refer later to the results obtained for the daily and monthly data as D-models and M-models 

http://thomsonreuters.com/
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respectively. The countries for which data were collected are: Austria (AUS), Australia (AUL), 

Belgium (BEL), Brazil (BRA), Canada (CAN), Czech Republic (CZE), China (CHI), Chile 

(CLE), Denmark, (DEN), Finland, (FIN), France (FRA), Germany (GER), Greece (GRE), 

Hungary (HUN), Iceland, (ICE), India (IND), Indonesia (INZ), Ireland (IRE), Israel (ISR), Italy 

(ITA), Japan (JAP), Korea (KOR), Mexico (MEX), Netherlands(NET), Norway, (NOR), Poland 

(POL), Portugal (POR), Russia (RUS), South Africa (SAE), Spain (SPA), Slovakia (SVK), 

Slovenia (SVN), Sweden (SWE), Switzerland (SWI), Turkey (TUR), United Kingdom (UKM), 

United States (USA). For estimation of the D-model we use the same number of observations for 

all countries, which is 640 data points from the beginning of October 2012 until 13 March 2015. 

This choice of was motivated by the fact that in September 2012 details of the ‘outright monetary 

transactions’, or OMT, program was announced, aiming at preventing speculative attacks on 

sovereign debt markets in Eurozone. As this announcement is regarded as a structural break in the 

dynamics of the bonds market (see e.g. Altavilla, Giannone and Lenza, 2014; Ehrmann and 

Fratzscher, 2015), we have decided to analyse daily data after this announcement, for the sake of 

homogeneity. For the M-models, we use data series of various length, as available in the 

Thompson Reuters database. The longest series are 303 observations, from the beginning of 

January 1990 to the beginning of March 2015 (Austria, Canada, Denmark, France, Germany, 

Ireland, Japan, Netherlands, Norway, Sweden, UK, US), and the shortest series we use have the 

length of not less than 100 observations. As the length of the monthly series for Chile is smaller 

than 100, we have decided to exclude it from the M-models. Such a long period might be subject to 

multiple structural breaks, which have been reflected in pre-testing. 

6.2 Pre-testing 

Before estimation, the series were subjected to a battery of unit root test. We have applied the 

GLS-detrended and optimal point unit root tests (see Ng and Perron, 2001, and Perron and Qu, 

2007), allowing for the presence and absence of the structural breaks under the null (see 

Carrion-i-Silvestre, Kim and Perron, 2009)
1
. We have also used the Rachev, Mittnik and Kim 

(1998), RMK, a test that is the analogues of the Augmented Dickey-Fuller test for the case where 

the variance of the tested variable is infinite. Tables A2.1 and A2.2 summarize the decisions 

obtained by the PT, MPT, GLS-detrended ADF, ZA, MZA MSB and MZT tests, and also for the 

RMK test, under the assumption that the characteristic exponent of the underlying Pareto-Lévy 

distribution are respectively equal to 1.5 and 1.25. For the D-models (Table A2.1) the results for 

the case of no structural breaks under the null are reported. For the M-models, which are estimated 

over a markedly longer period of time, results for the case of three structural breaks under the null 

are given. The outcomes of the tests are somewhat mixed. For the D-models, the evidence of 

stationarity of the series is prevailing, particularly by ZA and RMK tests. For the M-models the 

evidence of stationarity is less clear. For Turkey none of the tests applied rejected the null 

hypothesis that the series is I(1). For all other countries, at least four out of nine tests applied 

rejected the I(1) hypothesis at the 5% level of significance. 

The parameters of AR(k)-GARCH(1,1) models have been estimated by the maximum likelihood 

method with restrictions imposed by Assumptions A given in Section 3 and with the OLS initial 

values for the AR(k) parameters. The congruence of the models has been achieved by starting with 

the maximum admissible autoregressive lag of 15, and then gradually reducing the lag length as 

                                                      
1
 We have adopted the GAUSS code written by Josep Lluís Carrion-I Silvestre and available at 

http://people.bu.edu/perron/code.html  

http://people.bu.edu/perron/code.html
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long as the hypothesis of no autocorrelation at the 10% level of significance is maintained. The 

autocorrelation test criterion is that of the Ljung-Box autocorrelation test for testing 

autocorrelation up to the order of 12. Tables A2.3 and A2.4 in Appendix 2 summarize the 

estimation results. For most countries, they indicate the pattern of a short order autoregression, 

mostly AR(1). For the AR(1) models, the minimum roots are often large, showing that the 

first-order autoregressive coefficients are, in numerous cases, small in absolute values. Detailed 

estimation results are available at http://pramu.ac.uk. 

6.3 Testing for the policy effects 

Tables A2.5 and A2.6 present results of testing for policy effects in Models D and M respectively, 

applying three tests: the 
,nLM   and two variants of nLM : s

nLM , with symmetric drawings of  

0  and 0  from 0 = [0.75,1.25] [ 1.25, 0.75] [0.70, 0.90]     , and as

nLM , where the drawings 

are asymmetric. The former case implicitly assumes symmetricity in the thresholds of the policy 

signals aiming at the stabilization of the yields movement while the latter case allows for a lack of 

such symmetry. The p-values reported in Tables A2.5 and A2.6 are computed respectively for 

evaluated statistic and also for the upper and lower limits of the statistic interval, given by the 

range of ±2×standard deviations of the statistic, where the standard deviations have been obtained 

by simulation. For obtaining the p-values we have used the DGP analogous to DGP_1 described in 

Section 4, but formulated for the AR(k)-GARCH(1,1) model rather than 

ARMA(1,1)-GARCH(1,1,) model. For 1,...,12k   we have computed the 0.01, 0.02,…,0.99 

quantiles of the ,nLM   and nLM  statistics for the sample size of 100, 150, …,1000. Next, for 

each statistics, such 99 × 19 surface has been interpolated by the two-dimensional interpolatory 

spline with the grid factor equal to 5, giving the surface of 495 quantiles between 0.01 and 0.099 

times 95 sample sizes from 100 and 1000. Within this surface, the empirical quantiles have been 

interpolated. We have applied similar interpolation for the standard errors of the quantiles obtained 

by the n out of n bootstrap. 

Tables A2.5 and A2.6 in the Appendix 2 give p-values for the computed LM statistics and the 

upper and lower ends of the ±2×standard deviations intervals around them (see columns ‘pval’, 

pval low’ and pval high’ respectively). For some countries, although p-value is below 10%, the 

corresponding ‘pval high’ is above 10% which indicates that results must be interpreted with 

caution (see e.g. results for Indonesia, INZ, Table A2.5). 

Table 2: Number of significant statistics in the D-Models and M-Models 

 D-Model (37 countries) M-Model (34 countries) 

10% sgnf 5% sgnf 1% sgnf 10% sgnf 5% sgnf 1% sgnf 

,n
LM


 

20 17 12 17 15 12 

s

n
LM  

32 28 21 20 18 10 

as

n
LM  

33 30 22 19 18 12 

6.4 Testing the improvements in efficiency of fiscal policy 

In the context of modelling yields of the government bonds, a straightforward application of the 

,nLM   or nLM  tests can be for identification of countries which economic policy (fiscal, in this 

case) affects the dynamics of the yields series. Possible implication of this can be formulated as the 

hypothesis A: 

http://pramu.ac.uk/
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Hypothesis A: Countries with a relatively low level of fiscal efficiency are more likely to undertake 

a policy that affects the uncertainty of yields of the government bonds.  

In order to make the Hypothesis A more operational, we divide countries investigated here into 

two groups: group X, where the statistics 
,nLM   or nLM  are significant, indicating that effects 

of fiscal policy have been detected, and group Y, consisting of the remaining countries. For each 

group, we compute an average of an indicator of the fiscal efficiency across countries. If the 

Hypothesis A is true, the difference between means for groups X and Y should be statistically 

significant. Positive verification of Hypothesis A gives rise to evaluation of the following 

Hypothesis B: 

Hypothesis B (policy-stimulated fiscal improvement hypothesis): If the hypothesis A is true, and 

the policy is effective in reducing uncertainty, the differences in levels of fiscal efficiency, between 

countries with and without policy affected dynamics of yields, should diminish in time. 

In operational terms, we can verify this hypothesis by measuring the level of fiscal efficiency for 

groups X and Y in two different periods of time. If the averages of the fiscal efficiency indicators in 

group X are significantly higher than in group Y in the earlier period, and then, in the later period, 

these averages are not significantly different (or significant with the opposite sign), then the 

Hypotheses A and B are jointly confirmed.  

For testing, we have initially used three IMF indicators of fiscal efficiency: the Financial 

Soundness Indicator, the ratio of maturing debt to GDP, the budget deficit as a fraction of GDP and 

Total Financing Need, TFN, which is the sum of the maturing debt and budget deficit.
2
  

As the early period we treat 2013, that is the first year after the OMT announcement and, as the late 

period, IMF projection for 2015. Some missing values for 2013 and 2015 were replaced by data 

from neighbouring years. There are no data for Israel, Norway and Slovakia in the IFM database so 

that we have to exclude these countries from the analysis. We have analysed all three financial 

indicators and applied all three LM statistics. However, we have decided to proceed with TFN 

using as a financial indicator for the D-Model and the budget deficit for the M-Model, as in such 

case the numbers of observations in groups X and Y are approximately equal. Results for other 

indicators give a similar message is similar but are statistically less sound as sizes of the X and Y 

groups are markedly different. We have identified the group X as consisting of countries with 

significant policy effects, using, as the criterion, the significance of the ,nLM   statistic at the 10% 

level. Group Y consists of the remaining countries. Average levels of the financial indicator have 

been compared between the groups for 2013 and 2015 respectively. Results are summarized in 

Table 3. Sizes of the both groups are not identical, as data for the same countries are not always 

available for 2013 and 2015. 

Table 3: Results of testing the policy-stimulated fiscal improvement hypothesis 

 D-Model M-Model 

 2013 2015 2013 2015 

n 35 33 32 30 

                                                      
2
 Data are available at http://www.imf.org/external/ns/cs.aspx?id=262, and description, updates and analysis are 

published in the IMF Financial Monitor.  

http://www.imf.org/external/ns/cs.aspx?id=262
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( , )t X Y   2.07 -1.14 1.86 -0.22 

( )n X   18 16 15 14 

.( )av X  16.42 9.73 4.29 2.28 

. .( )st d X  12.78 5.04 2.86 2.30 

( )n Y   17 17 17 16 

.( )av Y  9.20 13.67 1.86 2.44 

. .( )st d Y  7.19 13.33 4.44 1.39 

 

Legend: n: the total number of countries; ( , )t X Y : t-statistic of the pairs test assuming unknown and non-identical 

variances; ( )n X , ( )n Y : number or elements in groups X and Y;  .( )av X , .( )av Y : arithmetic means of particular 

fiscal indicators in groups X and Y; . .( )st d X , . .( )st d Y : standard deviations of particular fiscal indicators in groups X 

and Y.   

The results, albeit not very sound, are generally in favour of the Hypotheses A and B. Significance 

of the t-test for differences in means, however marginal, indicates the fact that indeed countries in 

group X were, in 2013, in worse fiscal condition that countries in group B. As group A includes all 

countries with significant 
,nLM   statistics, it confirms Hypothesis A. Moving on to 2015, the 

t-statistics become insignificant, which is in line with Hypothesis B, that the effects of the policy 

lead, on average, to diminishing the differences in fiscal condition between countries.  

 

 

7. CONCLUSIONS 

We have shown that the tests we propose in this paper for detecting policy effects on the forecast 

uncertainty can be of a practical importance. Their asymptotic properties are sound, power is high 

for a relatively wide range of alternatives, and empirical application to modelling 10-year 

government bonds leads to interpretable results. Further possible applications of the tests proposed 

can be for economic processes that might be affected by policy action. Inflation targeting and 

exchange rate bands seem to be good candidates.  

Hidden economic assumptions which explain the simulation results are intuitively straightforward: 

the power of the test is low if the economic policy is weak (that is, if values of the parameters 

tested,   and  , are close to zero), and the model collapses if the experts advising on the policy 

are ignorant, that is where the parameter   in vector   is low. Moreover, testing requires 

relatively large samples of at least 100 observations; otherwise, power is low. Although finite 

sample critical values of these statistics are not known and have to be obtained by simulation, they 

are available at the project website (http://pramu.ac.uk).  

 

  

http://pramu.ac.uk/
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APPENDIX 1: TECHNICAL PROOFS 

A1: Proof of Lemma 1  

The consistency of   is split into several intermediate results. 

1). We first show that the initial values are asymptotically unimportant. Let ( )t   and ( )nQ   be 

obtained by replacing ( )t mm   and ( )t    by ( )t mm   and ( )t    in ( )t   and ( )nQ  . 

Using the elementary inequality | log( / ) | | | / min( , )x y x y x y   for > 0x  and > 0y , by (iv) 

and (v) we have  

 
( )

log .
( )

tt

t

K



 


 
  

Now, in view of the form of the density, note that  
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| | .sup
( )
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
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By the mean value theorem, (iv) and (v), it follows that  
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where   = | | | ( ) | ( ) | | | ( ) | .t

t t t m t t t mR X m X m K         

In view of (iii) we have /2 <s

tER  . Assuming / 2 <1s , we thus have  

 

/2

/2 /2

=1 =1
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s
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t t

t t

E R ER 
  

  
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and thus 
=1

t

tt
R



  is finite almost surely. It follows that  

  1( ) ( ) = .sup nnQ Q O n


  



  

2). We then show that the limit of the objective function is maximized at 0 . By the Jensen 

inequality, we have  

  0

1 ( )
( ) ( ) | , < = 0

( ) ( )

t m
t t u

u
t t

x m
E X u t log f dx

 


 

   

 
   

 
  

with equality iff 0=  , using (vii) and (x). 

3). We then show the asymptotic normality of 0( )n   . 
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A1.1 Density 

Note that 

 ( < ) = ( < , > ) ( < , < < ) ( < , < )P U t P X t Y Y P X t Y P X t Y Y          
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From elementary relationships we get 
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and the derivative gives  
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2

1
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A1.2 Veryfying that ( ) = 0tEg U  

Through integrating by parts we get 

    2( 1) ( ) = ( )x x ax b dx ax x ax b dx        , 

where 
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This gives 
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and subsequent integration by parts leads to: 
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Hence, denoting 2= / 1a    and 2= / 1b    ,  
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Similarly, we obtain 
,( ) ( ) = 0.x g x dx   

A1.3 Deriving ( )t tEU g U  

Through integration by parts, we get: 

      2 2( )( 1) = ( 1) ( ) 2 ( )x x x ax b dx a x x ax b dx x x ax b dx              

  2= ( 1) ( ) .a x x ax b dx    
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Therefore, denoting 2= / 1a    et and 2= / 1b    ,  
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With 2= / 1a     and 2= / 1b   ,  
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This gives 
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and after integrating by parts  
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A1.4. Deriving , ,( ) ( )t tEg U g U     

Integration by parts gives 

      2 2 2( )( 1) = ( 1) ( ) 2 ( )x x ax b dx a x x ax b dx x x ax b dx              

  2= ( 1) ( ) .a x x ax b dx    
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Appendix 2: Summary of empirical results 

Table A2.1: Unit roots testing, Model-D: no structural break under the null 

 
PT MPT ADF ZA MZA MSB MZT RMK,1.5 RMK,1.25 

AUS I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

AUL I(0) I(1) I(0) I(0) I(1) I(0) I(1) I(0) I(0) 

BEL I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

BRA I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

CAN I(1) I(1) I(1) I(0) I(1) I(1) I(1) I(0) I(0) 

CHI I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

CLE I(0) I(0) I(0) I(0) I(1) I(0) I(0) I(0) I(0) 

CZE I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

DEN I(0) I(0) I(0) I(0) I(1) I(0) I(0) I(0) I(0) 

FIN I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

FRA I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

GER I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

GRE I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

HUN I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

ICE I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

IND I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

INZ I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

IRE I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

ISR I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

ITA I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

JAP I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

KOR I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

MEX I(0) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

NET I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

NOR I(0) I(0) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

POL I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

POR I(0) I(0) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

RUS I(0) I(0) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

SAF I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

SPA I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

SVK I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

SVN I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

SWE I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

SWI I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

TUR I(1) I(1) I(1) I(0) I(1) I(1) I(1) I(0) I(0) 

UKM I(1) I(1) I(1) I(0) I(1) I(1) I(1) I(0) I(0) 

USA I(1) I(1) I(1) I(0) I(1) I(1) I(1) I(0) I(0) 

Sum of  

I(0) cases 
27 18 33 37 13 16 15 37 37 

Legend: I(0) means that the null hypothesis has been rejected at at least 5% level of significance. 
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Table A2.2: Unit roots testing, Model-M: three structural breaks under the null 

 

 PT MPT ADF ZA MZA MSB MZT RMK,1.5 RMK,1.25 

AUS I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

AUL I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

BEL I(0) I(1) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

BRA I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

CAN I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

CHI I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

CLE I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 

CZE I(0) I(1) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

DEN I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

FIN I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

FRA I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

GER I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

GRE I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

HUN I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

ICE I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

IND I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

INZ I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

IRE I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

ISR I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

ITA I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

JAP I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

KOR I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

MEX I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

NET I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

NOR I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

POL I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

POR I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

RUS I(0) I(1) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

SAF I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

SPA I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

SVK I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

SVN I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 

SWE I(1) I(1) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

SWI I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) I(0) 

TUR I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) I(1) 

UKM I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

USA I(1) I(1) I(0) I(0) I(1) I(1) I(1) I(0) I(0) 

Sum of  

I(0) cases 

7 4 34 34 8 8 8 34 34 

Legend: I(0) means that the null hypothesis has been rejected at at least 5% level of significance. 
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Table A2.3: Summary of estimation results, Model-D 

 Nobs max 

lag 

min of 

root 
log-likelihood Ljung_Box 

LB 

pval 

AUS 618 1 30.374 0.444 9.141 0.691 

AUL 618 1 73.117 0.257 11.141 0.517 

BEL 618 1 11.766 0.299 15.404 0.220 

BRA 618 1 Large 0.330 8.903 0.711 

CAN 618 1 128.746 0.430 7.727 0.806 

CHI 618 1 3.189 0.326 16.626 0.164 

CLE 618 3 2.090 0.334 15.445 0.218 

CZE 618 5 1.498 0.272 13.444 0.338 

DEN 618 1 17.326 -0.269 10.835 0.543 

FIN 618 1 25.530 0.269 14.366 0.278 

FRA 618 1 28.629 0.328 12.544 0.403 

GER 618 1 Large 0.231 15.347 0.223 

GRE 618 1 6.184 0.347 17.515 0.131 

HUN 618 1 25.388 0.436 8.139 0.774 

ICE 618 1 46.298 0.444 15.834 0.199 

IND 618 12 1.185 0.191 12.546 0.403 

INZ 618 1 4.015 0.396 6.681 0.878 

IRE 618 9 1.191 0.284 13.485 0.335 

ISR 617 1 17.312 0.429 7.228 0.842 

ITA 618 1 39.553 0.448 13.000 0.369 

JAP 618 1 Large 0.166 13.164 0.357 

KOR 618 1 Large 0.411 5.429 0.942 

MEX 618 1 38.523 0.396 15.437 0.218 

NET 618 1 18.726 0.250 14.832 0.251 

NOR 618 1 8.464 0.416 18.538 0.100 

POL 618 1 57.693 0.449 9.099 0.694 

POR 618 1 6.157 0.420 13.998 0.301 

RUS 618 1 Large 0.225 9.754 0.638 

SAF 618 1 10.312 0.408 17.935 0.118 

SPA 618 4 2.330 0.401 16.857 0.155 

SVK 618 1 4.347 0.270 13.877 0.309 

SVN 618 1 5.654 0.352 12.452 0.410 

SWE 618 1 6.666 0.339 15.013 0.241 

SWI 597 1 2.972 -0.889 11.269 0.506 

TUR 618 1 14.967 0.406 8.186 0.770 

UKM 618 7 1.313 0.454 15.694 0.206 

USA 618 1 16.988 0.440 17.788 0.122 
 

Legend: In column 4 ‘Large’ indicates large minimum root which, for numerical reasons, could not be computed 
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Table A2.4: Summary of estimation results, Model-M 

 

 Nobs max 

lag 

min of 

root 
log-likelihood Ljung_Box LB pval 

AUS 274 1 25.828 0.478 9.424 0.666 

AUL 116 1 15.520 0.412 11.503 0.486 

BEL 116 1 999.000 0.442 11.532 0.484 

BRA 155 1 28.404 0.417 8.106 0.777 

CAN 274 1 25.912 0.463 13.169 0.357 

CHI 125 2 2.214 0.422 15.851 0.198 

CZE 150 1 8.482 0.460 11.202 0.512 

DEN 274 3 1.674 0.261 13.565 0.329 

FIN 254 1 999.000 0.376 11.539 0.483 

FRA 274 1 42.485 0.407 11.741 0.467 

GER 274 1 999.000 0.338 15.553 0.213 

GRE 241 1 14.001 0.212 7.878 0.795 

HUN 165 1 72.793 0.473 12.408 0.414 

ICE 110 1 4.944 0.349 8.316 0.760 

IND 222 1 34.106 0.338 13.368 0.343 

INZ 113 1 8.779 0.422 6.731 0.875 

IRE 274 1 21.109 0.455 12.042 0.442 

ISR 126 1 118.373 0.406 15.859 0.198 

ITA 260 1 9.655 0.454 5.184 0.952 

JAP 274 1 220.634 0.377 11.784 0.463 

KOR 144 1 999.000 0.487 17.919 0.118 

MEX 135 1 14.827 0.495 14.421 0.275 

NET 274 1 162.146 0.344 12.631 0.396 

NOR 274 1 23.838 0.453 7.678 0.810 

POL 155 3 1.768 0.430 18.257 0.108 

POR 221 1 999.000 0.394 12.027 0.444 

RUS 115 1 27.449 0.448 11.734 0.467 

SAF 209 1 21.144 0.474 15.001 0.241 

SPA 257 1 17.565 0.467 7.116 0.850 

SVK 105 1 8.998 0.458 8.544 0.741 

SWE 274 1 75.393 0.374 17.480 0.132 

SWI 200 1 19.542 0.415 17.298 0.139 

UKM 274 6 1.335 0.388 8.274 0.763 

USA 274 1 12.722 0.413 15.185 0.231 
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Table A2.5: Testing for policy effects, Model-D 

 

 
nobs 

 

,nLM   
pval 

point 

pval 

high 

pval  

low 

AUS 618 
,n

LM

 0.346 0.673 0.677 0.671 

  s

n
LM  

0.531 0.728 0.732 0.726 

  as

n
LM  

0.745 0.637 0.641 0.633 

AUL 618 
,n

LM

 4.309 0.099 0.103 0.095 

  s

n
LM  

13.954 0.000 0.000 0.000 

  as

n
LM  

13.844 0.000 0.000 0.000 

BEL 618 
,n

LM

 12.228 0.000 0.000 0.000 

  s

n
LM  

22.789 0.000 0.000 0.000 

  as

n
LM  

23.114 0.000 0.000 0.000 

BRA 618 
,n

LM

 21.112 0.000 0.000 0.000 

  s

n
LM  

39.984 0.000 0.000 0.000 

  as

n
LM  

39.529 0.000 0.000 0.000 

CAN 618 
,n

LM

 8.049 0.024 0.024 0.022 

  s

n
LM  

10.173 0.024 0.026 0.022 

  as

n
LM  

9.724 0.022 0.024 0.020 

CHI 618 
,n

LM

 78.340 0.000 0.000 0.000 

  s

n
LM  

85.416 0.000 0.000 0.000 

  as

n
LM  

100.890 0.000 0.000 0.000 

CLE 618 
,n

LM

 82.208 0.000 0.000 0.000 

  s

n
LM  

95.462 0.000 0.000 0.000 

  as

n
LM  

110.007 0.000 0.000 0.000 

CZE 618 
,n

LM

 9.405 0.014 0.016 0.014 

  s

n
LM  

32.237 0.000 0.000 0.000 

  as

n
LM  

32.198 0.000 0.000 0.000 

DEN 618 
,n

LM

 14.770 0.000 0.000 0.000 

  s

n
LM  

34.216 0.000 0.000 0.000 

  as

n
LM  

32.244 0.000 0.000 0.000 

FIN 618 
,n

LM

 3.238 0.143 0.145 0.139 

  s

n
LM  

10.424 0.022 0.024 0.020 

  as

n
LM  

9.575 0.022 0.024 0.022 
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nobs 

 

,nLM   
pval 

point 

pval 

high 

pval  

low 

FRA 618 
,n

LM

 3.236 0.143 0.145 0.139 

   s

n
LM  

11.907 0.016 0.016 0.014 

  as

n
LM  

10.921 0.016 0.018 0.014 

GER 618 
,n

LM

 0.720 0.510 0.512 0.506 

  s

n
LM  

4.936 0.121 0.125 0.119 

  as

n
LM  

4.571 0.125 0.125 0.123 

GRE 618 
,n

LM

 7.028 0.036 0.038 0.034 

  s

n
LM  

28.916 0.000 0.000 0.000 

  as

n
LM  

26.726 0.000 0.000 0.000 

HUN 618 
,n

LM

 12.597 0.000 0.000 0.000 

  s

n
LM  

36.975 0.000 0.000 0.000 

  as

n
LM  

35.882 0.000 0.000 0.000 

ICE 618 
,n

LM

 44.380 0.000 0.000 0.000 

  s

n
LM  

76.972 0.000 0.000 0.000 

  as

n
LM  

79.427 0.000 0.000 0.000 

IND 618 
,n

LM

 3.591 0.127 0.131 0.125 

  s

n
LM  

23.984 0.000 0.000 0.000 

  as

n
LM  

22.701 0.000 0.000 0.000 

INZ 618 
,n

LM

 4.269 0.101 0.105 0.097 

  s

n
LM  

16.824 0.000 0.000 0.000 

  as

n
LM  

15.639 0.000 0.000 0.000 

IRE 618 
,n

LM

 7.585 0.028 0.030 0.026 

  s

n
LM  

19.997 0.000 0.000 0.000 

  as

n
LM  

19.260 0.000 0.000 0.000 

ISR 617 
,n

LM

 7.352 0.030 0.032 0.030 

  s

n
LM  

25.963 0.000 0.000 0.000 

  as

n
LM  

23.335 0.000 0.000 0.000 

ITA 618 
,n

LM

 10.448 0.000 0.010 0.000 

  s

n
LM  

20.531 0.000 0.000 0.000 

  as

n
LM  

18.802 0.000 0.000 0.000 

JAP 618 
,n

LM

 4.327 0.097 0.101 0.095 

  s

n
LM  

15.723 0.000 0.000 0.000 

  as

n
LM  

15.196 0.000 0.000 0.000 
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nobs 

 

,nLM   
pval 

point 

pval 

high 

pval  

low 

KOR 618 
,n

LM

 2.124 0.248 0.252 0.246 

  s

n
LM  

9.178 0.032 0.034 0.030 

  as

n
LM  

7.333 0.050 0.050 0.048 

MEX 618 
,n

LM

 0.854 0.462 0.462 0.460 

  s

n
LM  

3.263 0.210 0.212 0.208 

  as

n
LM  

3.510 0.179 0.183 0.175 

NET 618 
,n

LM

 4.240 0.101 0.107 0.097 

  s

n
LM  

10.473 0.022 0.024 0.020 

  as

n
LM  

9.244 0.024 0.026 0.024 

NOR 618 
,n

LM

 3.929 0.117 0.119 0.115 

  s

n
LM  

15.954 0.000 0.000 0.000 

  as

n
LM  

14.640 0.000 0.000 0.000 

POL 618 
,n

LM

 3.814 0.121 0.123 0.119 

  s

n
LM  

11.472 0.016 0.018 0.016 

  as

n
LM  

11.394 0.014 0.014 0.012 

POR 618 
,n

LM

 5.219 0.066 0.068 0.064 

  s

n
LM  

12.570 0.012 0.014 0.012 

  as

n
LM  

12.848 0.000 0.000 0.000 

RUS 618 
,n

LM

 169.176 0.000 0.000 0.000 

  s

n
LM  

171.946 0.000 0.000 0.000 

  as

n
LM  

205.055 0.000 0.000 0.000 

SAF 618 
,n

LM

 0.412 0.627 0.631 0.625 

  s

n
LM  

3.648 0.183 0.185 0.179 

  as

n
LM  

3.537 0.177 0.181 0.175 

SPA 618 
,n

LM

 4.083 0.111 0.115 0.107 

  s

n
LM  

7.045 0.062 0.064 0.060 

  as

n
LM  

9.023 0.026 0.028 0.024 

SVK 618 
,n

LM

 400.517 0.000 0.000 0.000 

  s

n
LM  

426.502 0.000 0.000 0.000 

  as

n
LM  

509.134 0.000 0.000 0.000 

SVN 618 
,n

LM

 22.248 0.000 0.000 0.000 

  s

n
LM  

49.121 0.000 0.000 0.000 

  as

n
LM  

37.795 0.000 0.000 0.000 
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nobs 

 

,nLM   
pval 

point 

pval 

high 

pval  

low 

SWE 618 
,n

LM

 2.947 0.171 0.173 0.167 

  s

n
LM  

9.820 0.026 0.028 0.024 

  as

n
LM  

9.809 0.022 0.022 0.020 

SWI 597 
,n

LM

 406.612 0.000 0.000 0.000 

  s

n
LM  

425.903 0.000 0.000 0.000 

  as

n
LM  

546.938 0.000 0.000 0.000 

TUR 618 
,n

LM

 2.571 0.200 0.204 0.196 

  s

n
LM  

5.200 0.111 0.113 0.109 

  as

n
LM  

5.348 0.091 0.095 0.089 

UKM 618 
,n

LM

 2.638 0.194 0.198 0.191 

  s

n
LM  

6.571 0.070 0.071 0.070 

  as

n
LM  

5.684 0.081 0.083 0.079 

USA 618 
,n

LM

 2.657 0.193 0.196 0.191 

  s

n
LM  

5.954 0.085 0.087 0.083 

  as

n
LM  

5.753 0.079 0.081 0.077 

 

 

Table A2.6: Testing for policy effects, Model-M 

 

 
nobs 

 

,nLM   
pval 

point 

pval 

high 

pval 

low 

AUS 274 
,n

LM

 3.297 0.155 0.157 0.153 

  s

n
LM  

3.232 0.212 0.214 0.210 

  as

n
LM  

3.483 0.193 0.194 0.191 

AUL 116 
,n

LM

 5.671 0.056 0.056 0.054 

  s

n
LM  

5.733 0.089 0.091 0.087 

  as

n
LM  

7.788 0.038 0.040 0.036 

BEL 116 
,n

LM

 1.413 0.349 0.351 0.345 

  s

n
LM  

1.778 0.391 0.393 0.389 

  as

n
LM  

2.017 0.349 0.351 0.349 

BRA 155 
,n

LM

 18.117 0.000 0.000 0.000 

  s

n
LM  

20.591 0.000 0.000 0.000 

  as

n
LM  

22.729 0.000 0.000 0.000 
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nobs 

 

,nLM   
pval 

point 

pval 

high 

pval 

low 

CAN 274 
,n

LM

 11.568 0.000 0.000 0.000 

  s

n
LM  

13.788 0.000 0.000 0.000 

  as

n
LM  

13.464 0.000 0.000 0.000 

CHI 125 
,n

LM

 14.812 0.000 0.000 0.000 

  s

n
LM  

17.662 0.000 0.000 0.000 

  as

n
LM  

20.208 0.000 0.000 0.000 

CZE 150 
,n

LM

 0.006 1.000 1.000 1.000 

  s

n
LM  

0.102 0.980 0.980 0.978 

  as

n
LM  

0.101 0.984 0.986 0.982 

DEN 274 
,n

LM

 2.831 0.189 0.196 0.185 

  s

n
LM  

3.957 0.163 0.165 0.161 

  as

n
LM  

4.893 0.111 0.113 0.109 

FIN 254 
,n

LM

 0.146 0.853 0.855 0.851 

  s

n
LM  

1.368 0.472 0.476 0.466 

  as

n
LM  

1.124 0.552 0.556 0.550 

FRA 274 
,n

LM

 1.909 0.276 0.282 0.272 

  s

n
LM  

2.620 0.270 0.274 0.266 

  as

n
LM  

2.883 0.244 0.246 0.242 

GER 274 
,n

LM

 1.430 0.339 0.343 0.337 

  s

n
LM  

4.032 0.159 0.161 0.159 

  as

n
LM  

3.515 0.191 0.193 0.189 

GRE 241 
,n

LM

 8.303 0.020 0.022 0.020 

  s

n
LM  

10.531 0.020 0.022 0.020 

  as

n
LM  

12.192 0.010 0.010 0.000 

HUN 165 
,n

LM

 15.793 0.000 0.000 0.000 

  s

n
LM  

18.444 0.000 0.000 0.000 

  as

n
LM  

19.313 0.000 0.000 0.000 

ICE 110 
,n

LM

 15.848 0.000 0.000 0.000 

  s

n
LM  

19.728 0.000 0.000 0.000 

  as

n
LM  

21.615 0.000 0.000 0.000 

IND 222 
,n

LM

 11.295 0.000 0.000 0.000 

  s

n
LM  

15.561 0.000 0.000 0.000 

  as

n
LM  

16.017 0.000 0.000 0.000 
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nobs 

 

,nLM   
pval 

point 

pval 

high 

pval 

low 

INZ 113 
,n

LM

 27.797 0.000 0.000 0.000 

  s

n
LM  

31.956 0.000 0.000 0.000 

  as

n
LM  

31.154 0.000 0.000 0.000 

IRE 274 
,n

LM

 1.558 0.321 0.325 0.317 

  s

n
LM  

7.679 0.048 0.050 0.046 

  as

n
LM  

6.789 0.052 0.054 0.050 

ISR 126 
,n

LM

 27.538 0.000 0.000 0.000 

  s

n
LM  

30.171 0.000 0.000 0.000 

  as

n
LM  

29.760 0.000 0.000 0.000 

ITA 260 
,n

LM

 1.637 0.314 0.317 0.312 

  s

n
LM  

1.939 0.357 0.359 0.353 

  as

n
LM  

2.328 0.302 0.306 0.296 

JAP 274 
,n

LM

 4.502 0.091 0.091 0.089 

  s

n
LM  

11.023 0.018 0.018 0.016 

  as

n
LM  

10.225 0.018 0.020 0.018 

KOR 144 
,n

LM

 1.012 0.446 0.448 0.442 

  s

n
LM  

4.752 0.121 0.123 0.121 

  as

n
LM  

4.582 0.125 0.129 0.123 

MEX 135 
,n

LM

 0.398 0.683 0.686 0.681 

  s

n
LM  

0.847 0.625 0.629 0.621 

  as

n
LM  

0.763 0.679 0.681 0.677 

NET 274 
,n

LM

 6.759 0.034 0.036 0.032 

  s

n
LM  

9.067 0.034 0.034 0.034 

  as

n
LM  

8.914 0.026 0.028 0.024 

NOR 274 
,n

LM

 1.612 0.317 0.319 0.314 

  s

n
LM  

5.906 0.085 0.087 0.083 

  as

n
LM  

5.152 0.101 0.103 0.097 

POL 155 
,n

LM

 0.582 0.593 0.595 0.591 

  s

n
LM  

0.652 0.706 0.710 0.704 

  as

n
LM  

0.666 0.722 0.724 0.720 

POR 221 
,n

LM

 0.519 0.619 0.625 0.615 

  s

n
LM  

1.490 0.437 0.440 0.433 

  as

n
LM  

1.520 0.452 0.456 0.450 
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nobs 

 

,nLM   
pval 

point 

pval 

high 

pval 

low 

RUS 115 
,n

LM

 3.356 0.157 0.159 0.155 

  s

n
LM  

7.745 0.048 0.050 0.046 

  as

n
LM  

10.014 0.020 0.022 0.018 

SAF 209 
,n

LM

 7.824 0.024 0.024 0.022 

  s

n
LM  

8.591 0.038 0.038 0.036 

  as

n
LM  

9.823 0.022 0.022 0.020 

SPA 257 
,n

LM

 0.769 0.528 0.532 0.524 

  s

n
LM  

1.237 0.504 0.506 0.502 

  as

n
LM  

1.707 0.399 0.401 0.397 

SVK 105 
,n

LM

 14.450 0.000 0.000 0.000 

  s

n
LM  

18.046 0.000 0.000 0.000 

  as

n
LM  

21.345 0.000 0.000 0.000 

SWE 274 
,n

LM

 3.070 0.175 0.177 0.173 

  s

n
LM  

3.088 0.228 0.234 0.220 

  as

n
LM  

4.442 0.131 0.133 0.127 

SWI 200 
,n

LM

 11.033 0.000 0.000 0.000 

  s

n
LM  

12.622 0.010 0.012 0.010 

  as

n
LM  

12.468 0.000 0.000 0.000 

UKM 274 
,n

LM

 12.529 0.000 0.000 0.000 

  s

n
LM  

12.157 0.012 0.014 0.012 

  as

n
LM  

13.343 0.000 0.000 0.000 

USA 274 
,n

LM

 16.895 0.000 0.000 0.000 

  s

n
LM  

18.158 0.000 0.000 0.000 

  as

n
LM  

23.388 0.000 0.000 0.000 
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